Với mong muốn tạo ra một tài liệu thể hiện được các phương pháp giải phương trình cùng với các hướng tiếp cận, đưa ra phương pháp tư duy và các phép suy luận để tìm ra được lời giải một cách tối ưu. Trong bài viết này chúng tôi sẽ sử dụng phương pháp "ĐÁNH GIÁ" để giải một lớp các bài toán dạng như vậy.
Tư tưởng chung là dựa vào các bất đẳng thức cơ bản hoặc cổ điển như AM-GM, Bunhiacopxki, hoặc tính đồng biến nghịch biến của hàm số...để so sánh và đưa ra kết quả.
Về tính đơn điệu của hàm số thì HS hiểu một cách đơn giản như sau(có 2 trường hợp thường gặp):
+ Nếu f(x) là hàm đồng biến hoặc nghịch biến trên D và u(x) và v(x) là các hàm số xác định trên D thì f(u(x)) = f(v(x)) $\Leftrightarrow$ u(x) = v(x).
+ Nếu phương trình f(x) = g(x) có f(x), g(x) lần lượt đồng biến và nghịch biến trên tập xác định của phương trình mà ta xác định được $x_{0}$ là nghiệm của nó thì đó cũng là nghiệm duy nhất của phương trình đã cho.
Bài toán 1: [Đề thi vào 10 Trường THPT chuyên Amsterdam - năm 2014]
Giải phương trình: $x(5x^{3}+2)$$ - 2(\sqrt{2x+1}-1) = 0$.
Lời giải:
Điều kiện $x ≥ -1/2$.
Ta viết lại phương trình đã cho dưới dạng sau:
$5x^{4}+2x$$ - 2\sqrt{2x+1}+2 = 0$.
$\Leftrightarrow$ $5x^{4}+ 2x+1 - 2\sqrt{2x+1}+1 = 0$.
$\Leftrightarrow$ $5x^{4}+ (2x+1 - 2\sqrt{2x+1}+1) = 0$.
$\Leftrightarrow$ $5x^{4}+ (\sqrt{2x+1}-1)^{2} = 0$.
Vì $5x^{4}\ge 0$ và $ (\sqrt{2x+1}-1)^{2} \ge 0$ $\Rightarrow$ $5x^{4}+ (\sqrt{2x+1}-1)^{2} \ge 0$
Dấu "=" xảy ra khi và chỉ khi x = 0 và đó cũng là nghiệm duy nhất của phương trình.
Bài toán 2:
Giải phương trình: $4x^{2} + 3x + 3$ = $4x\sqrt{x+3} + 2\sqrt{2x-1}$.
Lời giải:
Điều kiện $x ≥ 1/2$.
Ta viết lại phương trình đã cho dưới dạng sau:
$4x^{2} + 3x + 3$ = $4x\sqrt{x+3} + 2\sqrt{2x-1}$
$\Leftrightarrow$ $[4x^{2} - 4x\sqrt{x+3} + (x + 3)]$ + $[(2x - 1) + 2\sqrt{2x-1} + 1] = 0$
$\Leftrightarrow$ $(2x - \sqrt{x+3})^{2}$ + $(\sqrt{2x-1}-1)^{2} = 0$
Từ đây dễ dàng chỉ ra x = 1 là nghiệm duy nhất của phương trình.
Bài toán 3: [Đề kiểm tra kiến thức toán lớp 9 Trường THPT chuyên KHTN - đợt II, năm 2023]
Giải phương trình: $\sqrt{2x-1} + \sqrt{2-x^2}$ = $2 + |x-1|$.
Lời giải:
Điều kiện $1/2\le x\le \sqrt{2}$.
Sử dụng bất đẳng thức Bunhiacopxki ta có:
$(\sqrt{2x-1} + \sqrt{2-x^2})^{2}$ $\le 2(2x-1 + 2-x^2)$ = $2[2-(x-1)^{2}]$ = $4 - 2(x-1)^{2} \le 4$
$\Rightarrow$ $\sqrt{2x-1} + \sqrt{2-x^2}\le 2$
Mặt khác $2 + |x-1| \ge 2$, suy ra $\sqrt{2x-1}$ + $\sqrt{2-x^2} \le 2 + |x-1|$
Dấu "=" xảy ra khi và chỉ khi x = 1 và đó cũng là nghiệm duy nhất của phương trình ban đầu.
Bài toán 4: [Đề kiểm tra kiến thức toán lớp 9 Trường THPT chuyên KHTN - đợt I, năm 2023]
Giải phương trình: $x+5+\sqrt[3]{3x+5}$ = $8x^3$.
Lời giải:
Điều kiện $x \in R$.
Ta viết lại phương trình đã cho dưới dạng sau:
$x+5+\sqrt[3]{3x+5}$ = $8x^3$
$\Leftrightarrow$ $3x+5+\sqrt[3]{3x+5}$ = $8x^3 + 2x$
Dễ chỉ ra được hàm số $f(x) = x^3 + x$ là đơn điệu trên R
$\Rightarrow$ nghiệm của phương trình đã cho(nếu có) cũng là nghiệm của phương trình:
$2x = \sqrt[3]{3x+5}$
$\Leftrightarrow$ $8x^3 - 3x - 5 = 0$
$\Leftrightarrow$ $8x^3 - 3x - 5 = 0$
$\Leftrightarrow$ $(x-1)(8x^2 + 8x + 5) = 0$
$\Leftrightarrow$ x = 1
Vậy phương trình có nghiệm duy nhất x = 1.
Bài toán 5:
Giải phương trình: $x^{3}-4x^{2}-5x+6$ = $\sqrt[3]{7x^{2}+9x-4}$
Lời giải:
Điều kiện $x \in R$.
Ta viết lại phương trình đã cho dưới dạng sau:
$x^{3}-4x^{2}-5x+6$ = $\sqrt[3]{7x^{2}+9x-4}$
$\Leftrightarrow$ $x^{3}+3x^{2}+3x+1+x+1$ = $7x^{2}+9x-4$ + $\sqrt[3]{7x^{2}+9x-4}$
$\Leftrightarrow$ $(x+1)^{3}+(x+1)$ = $(7x^{2}+9x-4)$ + $\sqrt[3]{7x^{2}+9x-4}$
Đến đây chúng ta quay lại cách lý luận như bài toán 4. ở trên.
Bài toán 6:
Giải phương trình: $\sqrt{4x-1}+\sqrt{4x^2-1} = 1$
Lời giải:
Điều kiện $\left\{ \begin{array}{cl}4x-1 \geq 0 \\4x^2 - 1 \geq 0\end{array} \right.$ $\Leftrightarrow$ $x ≥ 1/2$.
Khi đó $4x-1 \geq 1$ $\Rightarrow$ $\sqrt{4x-1}+\sqrt{4x^2-1} \geq 1$
Dấu "=" xảy ra khi và chỉ khi x = 1/2 và đó cũng là nghiệm duy nhất của phương trình đã cho.
Bài toán 7: [Đề khảo sát chất lượng lớp 9 THCS Giảng Võ, 22/05/2023]
Giải phương trình $(5x+22)(2\sqrt{x}-\sqrt{2x+1})$ = $12x - 6$.
Lời giải:
Điều kiện x ≥ 0, khi đó bằng cách nhân liên hợp ta được:
$(5x+22)(2\sqrt{x}-\sqrt{2x+1})$ = $12x - 6$
$\Leftrightarrow$ $\frac{(5x+22)(2x-1)}{2\sqrt{x}+\sqrt{2x+1}}$ = $6(2x - 1)$
$\Leftrightarrow$ $(2x-1)(5x+22-12\sqrt{x}-6\sqrt{2x+1})$ $= 0$
$\Leftrightarrow$ $(2x-1)[3(x -4\sqrt{x} +4) + (2x + 1 - 6\sqrt{2x+1} + 9)]$ = $0$
$\Leftrightarrow$ $(2x-1)[3(\sqrt{x}-2)^{2}+(\sqrt{2x+1}-3)^{2}]$ = $0$
$\Leftrightarrow$ x = 1/2 hoặc x = 4 (thỏa mãn).
Vậy tập các giá trị x thỏa mãn yêu cầu bài ra là S = {1/2; 4}.
MỘT SỐ BÀI TẬP TỰ LUYỆN
Bài toán 8:
Giải các phương trình sau:
a. $x^2\sqrt{2x-1} = 4$
b. $\sqrt{5-x}$ = $\sqrt{x^{2}-12} - 1$
Bài toán 9:
Giải phương trình: $(4x+2)(1+\sqrt{x^2+x+1})$ + $3x(2+\sqrt{9x^2+3}) = 0$
Bài toán 10: [Đề kiểm tra kiến thức toán lớp 9 Trường THPT chuyên KHTN - đợt IV, năm 2017]
Giải phương trình: $4x\sqrt{x+3}$ = $5x^2 -x+4$.
Bài toán 11:
Giải phương trình: $\sqrt{x+2} + \sqrt{6-x}$ = $x^2 - 4x +8$
Bài toán 12: [William Nguyen - VMF]
Giải phương trình: $3\sqrt{x^2-1}$ = $\sqrt{2x-1}+2-3x$
Bài toán 13: [Nguyen Bao Khanh - VMF]
Giải phương trình: $\sqrt{8-x^2}$ + $\sqrt{\frac{1}{2}-\frac{1}{x^2}}$ + $x+\frac{1}{x}=5$
Nguyễn Kim Sổ
Hội Toán học Hà Nội